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Abstract—This paper introduces the use of the Action Chunking with Transformers (ACT) technique in 

single-arm robotic manipulation for vision-guided pick-and-place tasks. ACT employs a Conditional Variational 

Autoencoder (CVAE) to predict sequences of actions, termed "action chunks," which are groups of actions 

predicted together to achieve more complex tasks efficiently. Unlike traditional methods that rely solely on joint 

position data and predict individual actions, our approach integrates visual data to enrich the learning context and 

enhance execution precision. We acquired the expert data by providing manual demonstrations of the task, allowing 

the model to learn from real-time, complex action sequences. By predicting these action chunks instead of single 

actions, the ACT model adapts from dual-arm to single-arm configurations, enhancing control strategies and 

demonstrating significant improvements in the robot's speed, precision, and reliability. This substantiates the 

paper's title, "Vision-Guided Imitation Learning Using Action Chunk Transformers," highlighting the critical role of 

vision in advancing robotic control systems. Further project details are available on our website: 

https://sainavaneet.github.io/ACTfranka.github.io/
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I. INTRODUCTION

The ACT algorithm's initial success with dual-arm 

configurations highlighted its capability for refined 

manipulation and coordination, forming a robust foundation 

for further exploration [1][2]. Our research adapts this 

sophisticated algorithmic approach to a single-arm setup, 

aiming to achieve comparable levels of precision and 

efficiency in simpler configurations. This endeavor not 

only explores the algorithm's adaptability across different 

robotic platforms but also enhances our understanding of 

its potential scalability.

Inspired by significant advancements in robotic 

capabilities through imitation learning, such as those 

demonstrated in the "Mobile ALOHA" project [2], we 

aim to apply these techniques to enhance single-arm 

robotic manipulation. The Mobile ALOHA project 

utilized a low-cost teleoperation system to 

successfully implement complex bimanual mobile 

manipulation tasks, driven by imitation learning from 

human demonstrations [2]. This project's approach to 

combining mobility with manipulation skills in a 

bimanual context lays the groundwork for adapting 

these strategies to the more limited but equally 

complex domain of single-arm robots. 

Our adaptation involves refining the ACT model to 

better align with the operational specifics of the Franka 

robot, particularly by incorporating vision data into the 

learning process. By leveraging insights from both the 

initial dual-arm applications and subsequent innovations in 

vision-based mobile manipulation, we enhance the 

algorithm's framework to suit single-arm manipulation 

tasks more effectively. This integration of visual data is 

critical for demonstrating the algorithm's versatility and 

for expanding the capabilities of robotic automation in 

various industrial and service settings, highlighting our 

significant contributions to precision and efficiency in 

robotic control systems.

II. Methodology

In this study, we implement the ACT model on a 
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Franka Emika Panda robot to enhance its capability in 

performing precise manipulation tasks. The ACT model 

aims to leverage the sequential nature of actions in 

manipulation tasks, improving the robot's efficiency and 

adaptability by optimizing action execution through 

chunking. We executed the implementation both in a 

simulated environment and on the actual robot. 

A. System Setup

Simulated Environment Setup : We use the Gazebo 

robotics simulator to model the Franka Emika Panda robot 

with high fidelity, including virtual sensors and actuators. 

This allows us to develop and test control algorithms 

under simulated real-world physics. The simulation runs 

on Ubuntu 20.04 with ROS, seamlessly integrating our 

Python-based control algorithms and leveraging Python's 

machine learning libraries to optimize performance.

Real-World Environment Setup: In the real-world 

setup, the Franka Emika Panda robot is controlled via the Franka 

Control Interface (FCI) [3] in a laboratory setting with hardware 

mirroring the simulated sensors and actuators. Using ROS on 

Ubuntu 20.04 ensures software consistency and facilitates the 

transfer of scripts from simulation to reality. Real-time sensor 

feedback enables the robot to perform high-precision tasks with 

accurate and adaptable actions.

Fig 1: This image shows the complete real-world 

setup of the task.

B. Data Collection

We conducted data collection using the Franka 

interface with ROS, employing subscribers to monitor 

joint angles and camera feeds. Each episode began by 

placing the robot in free move mode. Throughout the 

pick-and-place task, we manually manipulated the 

robot, recording data from start to finish. This 

approach  mirrors the method used in the Mobile 

Aloha ACT algorithm, although our setup differs as it 

incorporates only a single arm, rather than a dual-arm 

system. Therefore, we acted as the demonstrator, 

guiding the robot's movements and capturing its 

actions along with the joint angles. We executed 50 

manual demonstrations, varying the positions of the 

cube. For each demonstration, we recorded data from 

8 joint positions—7 from the robot and 1 from the 

gripper, to determine whether it should be open or 

closed. We utilized a single camera, allowing us to 

collect visual data from each demonstration. 

C. Model Training

   We train the ACT model to predict future action 

sequences based on the robot's current sensory inputs, 

primarily focusing on the robot’s joint positions for 

forthcoming timesteps. By mimicking a human operator's 

anticipation of actions guided    by real-time observations, 

the model enhances the precision and adaptability of the 

Franka Emika Panda robot. During testing, we implement the 

most effective policy derived from validation results, 

concentrating on minimizing error accumulation that could 

lead the robot into untrained states. Model architecture 

integrates a CVAE with transformers for both the encoder 

and decoder. The encoder, adopting a BERT-like structure, 

inputs current joint positions and a target action sequence 

from our demonstrations, initiating with a "[CLS]" token, to 

encode both current and future states.

In the decoding phase, informed by current 

observations and a “style variable” z, the model predicts 

subsequent action sequences. This process is supported 

by the integration of ResNet image encoders and 

transformer architectures that handle and synthesize 

data from various sources, including camera images and 

joint positions. Observational data  encompasses one 

480x640 RGB images alongside the robot’s 8 DoF in 

joint positions—7 from the arm and 1 from the gripper. 

Our action space consists of an 8-dimensional vector of 

these joint positions, with the model outputting a tensor 

representing the sequence of actions. This output is 

processed through a network that flattens image 

features and merges them with position embeddings. 

Employing cross-attention mechanisms in the decoder 

[4], the model generates predictions for the robot’s 

subsequent movements by leveraging the processed 

encoder outputs, using L1 loss for action sequence 
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reconstruction to ensure heightened precision. 

III. Results and discussions

After training, we evaluated the policy by predicting actions 

for the robot and publishing these actions for execution. We 

observed that the robot successfully performed tasks in 

positions that were not explicitly included in the training 

dataset. This outcome demonstrates the model's robustness 

and its ability to generalize to new scenarios, underscoring 

the effectiveness of our training approach in equipping the 

robot with adaptable and reliable manipulation capabilities.

Fig 2: The image above depicts the entire pick-and-place 

task performed by the robot. As illustrated, the robot 

successfully picks up the cube from its initial position and 

places it accurately at the designated location.
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