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Abstract— In the realm of robotics, achieving precise 

manipulator control through learning-based methods 

presents both a significant challenge and an opportunity for 

advancing practical applications. This paper introduces an 

approach to robotic manipulation using behavioral cloning, 

a form of imitation learning, where a neural network model 

is trained to mimic expert-level control strategies. By 

leveraging a dataset comprising end-effector positions and 

corresponding joint angles of a robotic arm, our model 

learns to predict joint movements necessary to follow 

desired trajectories. The architecture of the network 

includes multiple fully connected layers with ReLU 

activations, designed to process three-dimensional inputs 

into seven-dimensional outputs, corresponding to the 

robot's joint angles. The effectiveness of this approach is 

demonstrated through experiments conducted on a Franka 

Emika Panda robot, where the model exhibits high 

precision in trajectory following tasks. Results highlight the 

model’s capacity to generalize from training data to real-

world tasks, achieving a mean squared error significantly 

lower than traditional control methods. For a dynamic 

presentation of our system's capabilities, we refer the 

reader to a supplementary video 

https://youtu.be/CYL4t0xv4y4?si=VQhLbGHCWN6NYQ

v2, showcasing the robot performing various tasks using the 

learned behaviors. This research not only validates the 

feasibility of using behavioral cloning for robotic 

manipulators but also opens avenues for further 

exploration into more complex tasks involving adaptive and 

interactive robotic behaviors. 

 
Index Terms—Behavioral cloning, imitation learning, neural 

networks, robotic manipulation. 

 

I. INTRODUCTION 

obotics has seen significant advancements through the 

integration of machine learning techniques, particularly in 

enhancing the precision and adaptability of robotic 

manipulators. Behavioral cloning, a subset of imitation 

learning, presents a compelling approach by enabling robots to 

learn complex tasks through demonstration rather than through 

explicit programming of control algorithms [21]. This method, 
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rooted in the way humans learn skills by imitation, has the 

potential to simplify the programming of robots for intricate 

tasks in dynamic environment [1]. 

   In traditional robotics, the mapping between sensor inputs and 

actuation commands often requires meticulous modeling of 

both the robot and its environment. However, such models can 

be difficult to obtain and may not generalize well across 

different or changing environments. Behavioral cloning offers 

a solution by directly learning this mapping from data, 

bypassing the need for explicit models. It involves training a 

neural network to replicate the actions of an expert, based on 

observed states and corresponding actions. The approach taken 

in this study utilizes a feedforward neural network that learns to 

predict the robot's joint angles from end-effector positions, a 

critical aspect for precise manipulative tasks [2]. 

The architecture of the implemented neural network, as 

detailed in the provided code, consists of three hidden layers 

with ReLU activations [11], making it robust enough to handle 

the non-linearities associated with the kinematics of robotic 

arms. This model was trained and validated using a dataset 

collected from a Franka Emika Panda robot, a popular choice 

for research due to its advanced capabilities and compliance 

features that allow for safe interaction with humans [22]. By 

training the network to mimic the expert-level trajectory 

following demonstrated in the dataset [23], the robot learns to 

perform tasks with a high degree of accuracy. 

This paper elaborates on the development, training, and 

implementation of a behavioral cloning model for robotic 

manipulators, focusing on its application to the Franka Emika 

Panda robot. We discuss the advantages of this approach, such 

as reduced complexity in controller design and enhanced 

adaptability to new tasks without reprogramming. The 

subsequent sections will detail the methodology, experimental 

setup, results, and implications of applying behavioral cloning 

to robot manipulator tasks. 

II. RELATED WORK 

The integration of machine learning techniques in robotic 

control systems has been a focal point of research due to their 

potential to enhance flexibility and efficiency in robot 

manipulation tasks. This section reviews relevant literature in 

the areas of imitation learning, behavioral cloning, and their 
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specific applications to robotics. 

A. Imitation Learning in Robotics 

    Imitation learning, as a method of learning from 

demonstration, has been widely studied and applied across 

various robotic systems to teach complex behaviors without 

explicit programming. Argall et al. (2009) provide a 

comprehensive survey that covers different approaches in 

imitation learning, emphasizing its utility in robotics for 

enabling autonomous systems to learn behaviors directly from 

human demonstrations [3]. This paradigm shifts the traditional 

robotics tasks from explicit programming to learning-based 

methods, which can significantly reduce the complexity and 

expertise required in robotics programming. 

 

B. Behavioral Cloning for Control Tasks 

    Behavioral cloning, a specific branch of imitation learning, 

involves training a model to mimic expert behavior based on 

observed state-action pairs. Pomerleau (1989) pioneered this 

approach with ALVINN, an autonomous driving system that 

learned to steer a vehicle by observing a human driver [4]. In 

robotics, this approach translates to learning the mapping from 

sensor readings or state descriptions directly to control 

commands. For instance, Zhang et al. (2018) demonstrated the 

use of behavioral cloning to train a robot to perform dexterous 

manipulation tasks, such as handling soft and deformable 

objects, by cloning human demonstrations captured via motion 

tracking [5]. 

 

C. Neural Networks in Robotic Manipulation 

    The application of neural networks in robotic manipulation 

has seen a variety of implementations, from simple 

feedforward networks to complex recurrent and convolutional 

networks. Watter et al. (2015) introduced an approach using 

deep neural networks to encapsulate the entire robotic system's 

dynamics for model-based reinforcement learning, showcasing 

significant improvements in prediction and control tasks [6]. 

Our approach uses a simpler feedforward architecture, as it 

provides a balance between model complexity and learning 

efficiency, suitable for real-time applications like controlling 

the Franka Emika Panda robot. 

 

D. Application to Real-World Robotics Systems 

    Several studies have applied these techniques to real-world 

robotic systems. For example, Levine et al. (2016) employed 

end-to-end training of deep neural networks for the task of 

robotic grasping, achieving impressive results in terms of both 

speed and reliability of the learned behaviors [7]. These 

studies underline the potential of deep learning models to 

generalize from training data to complex real-world tasks, an 

aspect our research aims to explore with the Franka Emika 

Panda. 

III.  METHODOLOGY 

This section describes the methodology adopted for applying 

behavioral cloning to robot manipulator tasks, detailing the 

architecture of the neural network, dataset preparation, training 

process, and experimental setup.    

A. Neural Network Architecture 

The core of our approach is the ImitationLearningModel, a 

fully connected neural network designed to predict the robot's 

joint angles based on its end-effector positions. The network 

comprises three hidden layers with 64 neurons each, using 

ReLU (Rectified Linear Unit) activation functions to introduce 

non-linearity essential for learning complex mappings. The 

input layer accepts three-dimensional vectors representing the 

end-effector positions (x, y, z coordinates), and the output layer 

produces seven-dimensional vectors corresponding to the 

robot's joint angles. This architecture is inspired by successful 

applications in similar tasks, where deep networks have 

demonstrated their ability to effectively model robotic 

dynamics [6]. 

 

B. Dataset 

    The dataset comprises pairs of end-effector positions and 

corresponding joint angles, collected from the Franka Emika 

Panda robot during various manipulation tasks. Each data 

entry is structured as a JSON object, facilitating easy parsing 

and processing. Data collection involved manual control of the 

robot to perform specific tasks while recording the end-

effector positions and joint angles at high fidelity. This 

method of data collection is akin to the technique used by 

Ross et al. (2011), who demonstrated the effectiveness of such 

datasets for training models via imitation learning [9]. 

 

C. Training Process 

    Training the ImitationLearningModel involves several 

steps. First, the dataset is loaded using a custom function, 

load_dataset, which parses a JSON file containing the training 

data. The data is then preprocessed by the prepare_data 

function, converting lists of dictionaries into tensors suitable 

for training. The model is trained using the mean squared error 

(MSE) loss function and the Adam optimizer, a choice 

motivated by its robustness in various machine learning tasks 

as outlined by Kingma and Ba (2014) [10]. Training involves 

multiple epochs where the model learns to minimize the error 

between the predicted joint angles and the true values from the 

dataset. 

 

IV. MATHEMATICAL BACKGROUND 

A. Neural Network Model Description 

    The neural network, named ImitationLearningModel, 

operates by mapping the input end-effector positions to the 

output joint angles through a series of fully connected layers 

with ReLU activations. Here are the detailed equations: 

 

Input Layer: Let X be the input vector to the network, 

representing the end-effector positions in three dimensions:  

X = [x, y, z]𝑇 
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Hidden Layers: The network consists of three hidden layers. 

Each layer l performs a linear transformation followed by a 

nonlinear activation function (ReLU). The operations for each 

hidden layer can be expressed as: 

ℎ1=𝑅𝑒𝐿𝑈(𝑊1𝑥+𝑏1), 𝑊1 is a 64×3 weight matrix, and 𝑏1 is a 64-

dimensional bias vector, initializing the process of capturing 

non-linear dependencies between input features and hidden 

representations.  

ℎ2=𝑅𝑒𝐿𝑈(𝑊2ℎ1+𝑏2) , 𝑊2 is a 64×64 weight matrix, and 𝑏2 is 

another 64-dimensional bias vector, further transforming the 

representations to capture deeper interactions as described by 

Goodfellow et al. (2016) [11]. 

 

ℎ3=𝑅𝑒𝐿𝑈(𝑊3ℎ2+𝑏3), 𝑊3 is also a 64×64 weight matrix, and 𝑏3 is 

a 64-dimensional bias vector, this layer enhances the model's 

ability to refine features essential for accurate predictions. 

 

The ReLU is defined as: ReLU(x) = max(0, x). 

 

This activation function, chosen for its simplicity and 

effectiveness in introducing non-linearities into the network, 

helps prevent the vanishing gradient problem, facilitating 

deeper model training as discussed by Nair and Hinton (2010) 

[12]. 

 

Output Layer: The final output layer linearly transforms the 

last hidden layer to produce the output vector y, representing 

the predicted joint angles:  

                                       y = 𝑊4ℎ3 + 𝑏4 

The output y is a 7-dimensional vector representing the 

predicted joint angles, where  𝑊4 is a 7×64 weight matrix, and  

  𝑏4 is a 7-dimensional bias vector. This final linear 

transformation maps the high-level features learned by the 

network to the specific task outputs. 

 

B. Loss Function 

    The network employs the Mean Squared Error (MSE) loss 

during training, crucial for regression tasks like this: 

MSE(y, t) = ∑ (𝑦𝑖 , −𝑡𝑖)
2𝑛

𝑖=1𝑛

1
 

Where n is the number of training samples, 𝑦𝑖is the predicted 

joint angle vector and 𝑡𝑖 is the true joint angle vector. This loss 

function measures the average of the squares of the errors—

i.e., the average squared difference between the estimated 

values and what is estimated, making it suitable for learning 

precise control tasks as noted by Bishop (2006) [14]. 

     

C. Optimization 

    To optimize our neural network, we employ the Adam 

optimization algorithm [10], which adapts the learning rate for 

each parameter. Adam combines the advantages of AdaGrad 

[19], which works well with sparse gradients, and RMSProp 

[20], which handles non-stationary objectives effectively.  

 

 

 

 

 

TABLE I 
Adam Update Rules 

 
1. Initialize moment vectors and time step: 𝑚0 = 0, 𝑣0 = 0, t = 0. 

2. Update time step = t = t + 1 

3. Calculate gradients: 𝑔𝑡 = 𝛻𝜃𝐽(𝜃𝑡) [8] 

4. Update biased first moment: 

i. 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1- 𝛽1) 𝑔𝑡 
5. Update biased second raw moment.  

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1- 𝛽1) 𝑔𝑡
2 

6. Correct bias in first moment: 𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡  [15] [10] 

7. Correct bias in second moment: 𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡  [15] [10] 

8. update parameters: 𝜃
𝑡+1= 𝜃𝑡 − 𝛼

𝑚̂𝑡

√𝑣𝑡+𝜖

 

 

 
        TABLE II 

VARIABLES 

Serial 

number 
Variable Representation 

1.  𝜃 Parameters of the neural networks 
(weights and biases) 

2.  𝑔𝑡 
   

Gradient of the loss function at 

timestep t. 

3.  𝑚𝑡 First moment vector (mean of 

gradients). 

4.  𝑣𝑡
 Second moment vector (uncentered 

variance of gradients) 

5. 𝛼= 0.001 Step size or learning rate. 

6.  𝛽1 = 0.9, 𝛽2 = 0.999 
 

Exponential decay rates for moment 

estimates. 

7.  ∈ = 1𝑒−8 small constant to prevent division by 

zero. 
 

V. EXPERIMENTS 

This section details the experiments conducted to evaluate the 

performance of the ImitationLearningModel. Given that the 

model has not been tested in real-time on physical hardware, 

our experiments were conducted within a controlled 

simulation environment. This approach allowed for a 

systematic assessment of the model's predictive accuracy and 

its ability to generalize across different trajectory-following 

tasks.  

A. Experimental Setup 

    The experiments were conducted using a simulated Franka 

Emika Panda robot environment implemented in 

ROS/Gazebo. This setup mirrors the physical configuration of 

the robot but allows for rapid iteration and testing without the 

risk of damaging hardware. The simulation environment is 

instrumental for validating the neural network's performance 

under varied conditions, as recommended by Zhou et al. 

(2019) for initial testing phases [16]. Such simulation practices 

are well-documented in broader robotics literature, including 

[13] which provides foundational methodologies for 

employing simulations in robotic systems design and testing. 
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Fig.1. Simulation of the Franka Emika Panda robot in the Gazebo environment, 

showcasing its articulated structure and end-effector positioning. The setup 
illustrates the robot's capabilities for precision manipulation tasks within a 

virtual testing framework. 

 

 

 

B. Trajectory Generation and Execution 

    To evaluate the model's effectiveness, the robot was 

instructed to follow square trajectories of varying sizes and 

orientations. The SquareTraj class generated a series of points 

representing the corners of the square, which were then 

interpolated to form a smooth trajectory. This setup mimics 

the scenario presented by Calinon et al. (2010), who 

highlighted the importance of trajectory smoothness in robot 

learning [17]. The trajectories were set with a constant z-

height, ensuring that the learning model focused on lateral 

movement complexities. 

 

C. Model Evaluation 

    The model was evaluated based on its prediction accuracy 

and the mean squared error (MSE) between the predicted joint 

angles and the simulated true values. For each trajectory, the 

robot’s end-effector position was fed into the model, and the 

predicted joint angles were compared to the ground truth data 

from the simulation. This method aligns with the validation 

approaches used in other studies where direct comparison with 

a ground truth establishes a clear benchmark for performance 

[18].  

VI. RESULTS AND DISCUSSIONS 

In our evaluation, the ImitationLearningModel demonstrated 

high accuracy in following predefined square trajectories, with 

low mean squared error (MSE) indicating precise control. 

Visual comparisons through plotted graphs of the actual versus 

predicted trajectories reveal tight alignment for these controlled 

path conditions. Conversely, when utilizing trajectories input 

via the Freehand Drawer, the model exhibited increased 

variance in MSE, highlighting discrepancies in its ability to 

handle dynamic, user-generated paths. The visual 

representation of these trajectories showed notable deviations 

from the intended paths, suggesting a decrease in tracking 

accuracy under less predictable conditions. 

 
Fig.2. Comparison of the reference trajectory and actual trajectory followed 

by the robot, demonstrating the precision of its movement control in a 3D 

space. 

 

 
 

Fig.3. Display of a robot in a simulation environment executing a circular 
trajectory, traced using a freehand drawing tool, illustrating the adaptability and 

precision of its path-following capabilities. 

    The contrasting results between predefined and freehand-

drawn trajectories underscore the model's current limitations in 

adapting to unstructured environments, a common challenge in 

robotics. While the model excels in controlled settings, its 

performance in dynamic scenarios suggests the need for 

enhancements in its training regime. Incorporating a broader 

range of motion patterns during training or employing advanced 

techniques such as online learning and continuous adaptation 

might improve its responsiveness and accuracy in real-world 

applications. These insights direct future research towards not 

only refining the model’s architecture but also exploring the 

integration of sensory feedback mechanisms to better 

accommodate variable user inputs. 

VII. CONCLUSION AND FUTURE WORKS 

This study has successfully demonstrated the capability of a 

behavioral cloning model to perform robotic manipulator tasks 

effectively within static environments. By leveraging a neural 

network-based ImitationLearningModel, our approach has 

shown proficiency in predicting joint angles from end-effector 

positions, enabling precise execution of predefined tasks. 

However, the model's performance is contingent on 

environmental consistency with the training data, highlighting 

a limitation in its ability to adapt to new, unseen scenarios. To 

enhance the model's adaptability and utility in dynamic 

settings, future research will focus on developing a robust 
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imitation learning strategy that can generalize to unfamiliar 

environments. We plan to explore adaptive learning methods, 

such as online learning for real-time model updates and meta-

learning techniques for rapid adaptation to new tasks with 

minimal data. These enhancements aim to broaden the 

practical applications of robotic systems, allowing them to 

operate effectively across a wider range of complex and 

variable conditions. 
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